index

Pre-Algebra Workbook 11: Exponents & Scientific Notation

· 1min
Problem 01
Evaluate Numeric Exponents

Evaluate: 343^4

Choices
A 1212
B 2727
C 8181
D 6464
Strategy

Expand the power as repeated multiplication: 343^4 means 33333 \cdot 3 \cdot 3 \cdot 3

Solution

Write 343^4 as repeated multiplication:

34=33333^4 = 3 \cdot 3 \cdot 3 \cdot 3

Multiply step by step:

  • 33=93 \cdot 3 = 9
  • 93=279 \cdot 3 = 27
  • 273=8127 \cdot 3 = 81

So 34=813^4 = 81

The correct choice is C. 8181.


Problem 02
Evaluate Numeric Exponents

Evaluate: (2)3(-2)^3

Choices
A 88
B 8-8
C 44
D 4-4
Strategy

Expand (2)3(-2)^3 as (2)(2)(2)(-2) \cdot (-2) \cdot (-2) Remember: the product of two negatives is positive, and then multiply by another negative.

Solution

Write (2)3(-2)^3 as repeated multiplication:

(2)3=(2)(2)(2)(-2)^3 = (-2) \cdot (-2) \cdot (-2)

Multiply step by step:

  • (2)(2)=4(-2) \cdot (-2) = 4 (negative times negative is positive)
  • 4(2)=84 \cdot (-2) = -8

So (2)3=8(-2)^3 = -8

The correct choice is B. 8-8.


Problem 03
Basic Exponent Rules (Same Base)

Simplify: 23242^3 \cdot 2^4

Choices
A 2122^{12}
B 212^1
C 3232
D 128128
Strategy

When multiplying powers with the same base, keep the base and add the exponents: aman=am+na^m \cdot a^n = a^{m+n}

Solution

Use the product rule for exponents:

2324=23+4=272^3 \cdot 2^4 = 2^{3+4} = 2^7

Evaluate 272^7

27=1282^7 = 128

So the simplified result is 128128

The correct choice is D. 128128.


Problem 04
Basic Exponent Rules (Same Base)

Simplify: x5x2\dfrac{x^5}{x^2} (assume x0x \ne 0).

Choices
A x3x^3
B x7x^7
C x2x^2
D 1x3\dfrac{1}{x^3}
Strategy

For a quotient with the same base, subtract exponents: aman=amn\dfrac{a^m}{a^n} = a^{m-n}

Solution

Apply the quotient rule:

x5x2=x52=x3\dfrac{x^5}{x^2} = x^{5-2} = x^3

So the simplified expression is x3x^3

The correct choice is A. x3x^3.


Problem 05
Basic Exponent Rules (Same Base)

Simplify: (32)3(3^2)^3

Choices
A 3636
B 243243
C 729729
D 8181
Strategy

Use the power-of-a-power rule: (am)n=amn(a^m)^n = a^{m \cdot n}

Solution

Apply the power-of-a-power rule:

(32)3=323=36(3^2)^3 = 3^{2 \cdot 3} = 3^6

Evaluate 363^6

36=3333=2727=7293^6 = 3^3 \cdot 3^3 = 27 \cdot 27 = 729

So (32)3=729(3^2)^3 = 729

The correct choice is C. 729729.


Problem 06
Evaluate Numeric Exponents

Simplify: 23522^3 \cdot 5^2

Choices
A 4040
B 200200
C 100100
D 10510^5
Strategy

The bases are different, so the exponent rules for combining exponents do not apply across 22 and 55 Evaluate each power separately, then multiply the results.

Solution

Evaluate each power first:

  • 23=82^3 = 8
  • 52=255^2 = 25

Now multiply:

825=2008 \cdot 25 = 200

So the simplified value is 200200

The correct choice is B. 200200.


Problem 07
Write Numbers in Scientific Notation

Write 4,500,0004{,}500{,}000 in scientific notation.

Choices
A 4.5×1064.5 \times 10^6
B 45×10545 \times 10^5
C 4.5×1054.5 \times 10^5
D 0.45×1070.45 \times 10^7
Strategy

Move the decimal so you have a number between 11 and 1010 then count how many places you moved it. That count becomes the positive exponent of 1010

Solution

Start with 4,500,0004{,}500{,}000 and place the decimal after the first nonzero digit:

4,500,000=4.5×1,000,0004{,}500{,}000 = 4.5 \times 1{,}000{,}000

We moved the decimal 66 places to the left:

1,000,000=1061{,}000{,}000 = 10^6

So in scientific notation:

4,500,000=4.5×1064{,}500{,}000 = 4.5 \times 10^6

The correct choice is A. 4.5×1064.5 \times 10^6.


Problem 08
Write Numbers in Scientific Notation

Write 0.000320.00032 in scientific notation.

Choices
A 3.2×1043.2 \times 10^4
B 0.32×1030.32 \times 10^{-3}
C 3.2×1043.2 \times 10^{-4}
D 32×10632 \times 10^{-6}
Strategy

Move the decimal to get a number between 11 and 1010 Count how many places you move it to the right; that count becomes a negative exponent: a×10na \times 10^{-n}

Solution

Place the decimal so the number is between 11 and 1010

0.00032=3.2×0.00010.00032 = 3.2 \times 0.0001

We moved the decimal 44 places to the right, so the exponent is 4-4

0.0001=1040.0001 = 10^{-4}

So in scientific notation:

0.00032=3.2×1040.00032 = 3.2 \times 10^{-4}

The correct choice is C. 3.2×1043.2 \times 10^{-4}.


Problem 09
Multiply & Divide in Scientific Notation

Simplify: (3×104)(2×103)(3 \times 10^4)(2 \times 10^3)

Choices
A 5×1075 \times 10^7
B 6×1076 \times 10^7
C 6×10126 \times 10^{12}
D 3×1073 \times 10^7
Strategy

Multiply the numbers in front and use the product rule on the powers of 1010 (3×2)×104+3(3 \times 2) \times 10^{4+3}

Solution

Multiply the coefficients and then the powers of 1010

(3×104)(2×103)=(32)×104+3(3 \times 10^4)(2 \times 10^3) = (3 \cdot 2) \times 10^{4+3}

Compute each part:

32=6,4+3=73 \cdot 2 = 6, \quad 4 + 3 = 7

so

(3×104)(2×103)=6×107(3 \times 10^4)(2 \times 10^3) = 6 \times 10^7

This is already in scientific notation.

The correct choice is B. 6×1076 \times 10^7.


Problem 10
Multiply & Divide in Scientific Notation

Simplify: 4.8×1056×102\dfrac{4.8 \times 10^5}{6 \times 10^2}

Choices
A 0.8×1030.8 \times 10^3
B 8×1038 \times 10^3
C 8×1028 \times 10^2
D 0.48×1030.48 \times 10^3
Strategy

Divide the coefficients and subtract the exponents: 4.86×1052\dfrac{4.8}{6} \times 10^{5-2} Then adjust the coefficient if needed so it is between 11 and 1010

Solution

Separate the fraction into coefficients and powers of 1010

4.8×1056×102=(4.86)×1052\dfrac{4.8 \times 10^5}{6 \times 10^2} = \left(\dfrac{4.8}{6}\right) \times 10^{5-2}

Compute the coefficient and exponent:

4.86=0.8,52=3\dfrac{4.8}{6} = 0.8, \quad 5 - 2 = 3

So we have 0.8×1030.8 \times 10^3 To write this in scientific notation, move the decimal one place to make 8.08.0

0.8×103=8.0×1020.8 \times 10^3 = 8.0 \times 10^2

So in scientific notation, the result is 8×1028 \times 10^2

The correct choice is C. 8×1028 \times 10^2.