index

Pre-Algebra Workbook 12: Radicals & Rationalizing the Denominator

· 1min
Problem 01
Rationalize Simple Radical Denominators

Simplify and rationalize the denominator: 53\dfrac{5}{\sqrt{3}}

Choices
A 533\dfrac{5}{3\sqrt{3}}
B 533\dfrac{5\sqrt{3}}{3}
C 535\sqrt{3}
D 35\dfrac{\sqrt{3}}{5}
Strategy

To remove the square root from the denominator, multiply the numerator and denominator by 3\sqrt{3}

Solution

Multiply numerator and denominator by 3\sqrt{3}

5333=53(3)(3)\dfrac{5}{\sqrt{3}} \cdot \dfrac{\sqrt{3}}{\sqrt{3}} = \dfrac{5\sqrt{3}}{(\sqrt{3})(\sqrt{3})}

Since (3)(3)=3(\sqrt{3})(\sqrt{3}) = 3 the fraction becomes

533\dfrac{5\sqrt{3}}{3}

The denominator is now rational.

The correct choice is B. 533\dfrac{5\sqrt{3}}{3}.


Problem 02
Rationalize Simple Radical Denominators

Simplify and rationalize the denominator: 25\dfrac{2}{\sqrt{5}}

Choices
A 255\dfrac{2}{5\sqrt{5}}
B 252\sqrt{5}
C 255\dfrac{2\sqrt{5}}{5}
D 52\dfrac{\sqrt{5}}{2}
Strategy

Multiply the top and bottom by 5\sqrt{5} so that the denominator becomes 55

Solution

Multiply numerator and denominator by 5\sqrt{5}

2555=25(5)(5)=255\dfrac{2}{\sqrt{5}} \cdot \dfrac{\sqrt{5}}{\sqrt{5}} = \dfrac{2\sqrt{5}}{(\sqrt{5})(\sqrt{5})} = \dfrac{2\sqrt{5}}{5}

The denominator is now 55 a rational number.

The correct choice is C. 255\dfrac{2\sqrt{5}}{5}.


Problem 03
Rationalize Simple Radical Denominators

Simplify and rationalize the denominator: 23\dfrac{\sqrt{2}}{\sqrt{3}}

Choices
A 63\dfrac{\sqrt{6}}{3}
B 63\dfrac{\sqrt{6}}{\sqrt{3}}
C 23\dfrac{\sqrt{2}}{3}
D 23\sqrt{\dfrac{2}{3}}
Strategy

Multiply numerator and denominator by 3\sqrt{3} so the denominator becomes 33 Use 23=6\sqrt{2}\cdot\sqrt{3} = \sqrt{6}

Solution

Multiply by 33\dfrac{\sqrt{3}}{\sqrt{3}}

2333=23(3)(3)=63\dfrac{\sqrt{2}}{\sqrt{3}} \cdot \dfrac{\sqrt{3}}{\sqrt{3}} = \dfrac{\sqrt{2}\sqrt{3}}{(\sqrt{3})(\sqrt{3})} = \dfrac{\sqrt{6}}{3}

The denominator is now the integer 33

The correct choice is A. 63\dfrac{\sqrt{6}}{3}.


Problem 04
Rationalize Simple Radical Denominators

Simplify and rationalize the denominator: 723\dfrac{7}{2\sqrt{3}}

Choices
A 763\dfrac{7}{6\sqrt{3}}
B 732\dfrac{7\sqrt{3}}{2}
C 1433\dfrac{14\sqrt{3}}{3}
D 736\dfrac{7\sqrt{3}}{6}
Strategy

Treat 232\sqrt{3} as a single denominator. Multiply numerator and denominator by 3\sqrt{3} then simplify the denominator.

Solution

Multiply by 33\dfrac{\sqrt{3}}{\sqrt{3}}

72333=732(33)\dfrac{7}{2\sqrt{3}} \cdot \dfrac{\sqrt{3}}{\sqrt{3}} = \dfrac{7\sqrt{3}}{2(\sqrt{3}\cdot\sqrt{3})}

Compute 33=3\sqrt{3} \cdot \sqrt{3} = 3

7323=736\dfrac{7\sqrt{3}}{2 \cdot 3} = \dfrac{7\sqrt{3}}{6}

The denominator is now 66

The correct choice is D. 736\dfrac{7\sqrt{3}}{6}.


Problem 05
Simplify Square Roots Using Perfect Squares

Simplify: 62\dfrac{\sqrt{6}}{\sqrt{2}}

Choices
A 32\dfrac{\sqrt{3}}{2}
B 3\sqrt{3}
C 122\dfrac{\sqrt{12}}{2}
D 33
Strategy

You can combine the radicals first: 62=62\dfrac{\sqrt{6}}{\sqrt{2}} = \sqrt{\dfrac{6}{2}} then simplify the fraction inside the radical.

Solution

Combine the square roots:

62=62=3\dfrac{\sqrt{6}}{\sqrt{2}} = \sqrt{\dfrac{6}{2}} = \sqrt{3}

The result already has a rational denominator (since there is no denominator at all).

The correct choice is B. 3\sqrt{3}.


Problem 06
Simplify & Rationalize Combined

Simplify and rationalize the denominator: 3+55\dfrac{3 + \sqrt{5}}{\sqrt{5}}

Choices
A 35+55\dfrac{3\sqrt{5} + 5}{5}
B 3+555\dfrac{3 + 5\sqrt{5}}{5}
C 3+53 + \sqrt{5}
D 3+55\dfrac{3 + \sqrt{5}}{5}
Strategy

Multiply the entire numerator and the denominator by 5\sqrt{5} Distribute 5\sqrt{5} across 3+53 + \sqrt{5} in the numerator.

Solution

Multiply by 55\dfrac{\sqrt{5}}{\sqrt{5}}

3+5555=(3+5)5(5)(5)\dfrac{3 + \sqrt{5}}{\sqrt{5}} \cdot \dfrac{\sqrt{5}}{\sqrt{5}} = \dfrac{(3 + \sqrt{5})\sqrt{5}}{(\sqrt{5})(\sqrt{5})}

Distribute 5\sqrt{5} in the numerator:

(3+5)5=35+(5)(5)=35+5(3 + \sqrt{5})\sqrt{5} = 3\sqrt{5} + (\sqrt{5})(\sqrt{5}) = 3\sqrt{5} + 5

The denominator is

(5)(5)=5(\sqrt{5})(\sqrt{5}) = 5

So the fraction becomes

35+55\dfrac{3\sqrt{5} + 5}{5}

The correct choice is A. 35+55\dfrac{3\sqrt{5} + 5}{5}.


Problem 07
Simplify & Rationalize Combined

Simplify and rationalize the denominator: 422\dfrac{4 - \sqrt{2}}{\sqrt{2}}

Choices
A 4222\dfrac{4\sqrt{2} - 2}{2}
B 4224\sqrt{2} - 2
C 2212\sqrt{2} - 1
D 422\dfrac{4 - \sqrt{2}}{2}
Strategy

Multiply numerator and denominator by 2\sqrt{2} Distribute 2\sqrt{2} over 424 - \sqrt{2} in the numerator, then simplify.

Solution

Multiply by 22\dfrac{\sqrt{2}}{\sqrt{2}}

42222=(42)2(2)(2)\dfrac{4 - \sqrt{2}}{\sqrt{2}} \cdot \dfrac{\sqrt{2}}{\sqrt{2}} = \dfrac{(4 - \sqrt{2})\sqrt{2}}{(\sqrt{2})(\sqrt{2})}

Distribute 2\sqrt{2}

(42)2=42(2)(2)=422(4 - \sqrt{2})\sqrt{2} = 4\sqrt{2} - (\sqrt{2})(\sqrt{2}) = 4\sqrt{2} - 2

The denominator is (2)(2)=2(\sqrt{2})(\sqrt{2}) = 2 so

4222\dfrac{4\sqrt{2} - 2}{2}

Now simplify by dividing each term by 22

42222=221\dfrac{4\sqrt{2}}{2} - \dfrac{2}{2} = 2\sqrt{2} - 1

The correct choice is C. 2212\sqrt{2} - 1.


Problem 08
Simplify Square Roots Using Perfect Squares

Simplify: 842\dfrac{\sqrt{8}}{4\sqrt{2}}

Choices
A 12\dfrac{1}{2}
B 24\dfrac{\sqrt{2}}{4}
C 84\dfrac{\sqrt{8}}{4}
D 22
Strategy

First simplify 8\sqrt{8} using a perfect square factor. Then see if any radicals cancel before worrying about rationalizing.

Solution

Simplify 8\sqrt{8}

8=42,8=42=228 = 4 \cdot 2, \quad \sqrt{8} = \sqrt{4\cdot 2} = 2\sqrt{2}

Substitute into the fraction:

842=2242\dfrac{\sqrt{8}}{4\sqrt{2}} = \dfrac{2\sqrt{2}}{4\sqrt{2}}

Cancel 2\sqrt{2} from numerator and denominator:

24=12\dfrac{2}{4} = \dfrac{1}{2}

The simplified value is 12\dfrac{1}{2} which already has a rational denominator.

The correct choice is A. 12\dfrac{1}{2}.


Problem 09
Simplify Square Roots Using Perfect Squares

Simplify: 233\dfrac{2\sqrt{3}}{\sqrt{3}}

Choices
A 232\sqrt{3}
B 32\dfrac{\sqrt{3}}{2}
C 2\sqrt{2}
D 22
Strategy

Notice the same radical appears in numerator and denominator. You can cancel 3\sqrt{3} as long as it is not zero.

Solution

Write the fraction explicitly:

233\dfrac{2\sqrt{3}}{\sqrt{3}}

Cancel 3\sqrt{3} from top and bottom:

233=2\dfrac{2\cancel{\sqrt{3}}}{\cancel{\sqrt{3}}} = 2

The result is the integer 22

The correct choice is D. 22.


Problem 10
Simplify Square Roots Using Perfect Squares

Simplify: 528\dfrac{5\sqrt{2}}{\sqrt{8}}

Choices
A 522\dfrac{5\sqrt{2}}{2}
B 52\dfrac{5}{2}
C 52\dfrac{5}{\sqrt{2}}
D 5\sqrt{5}
Strategy

First simplify 8\sqrt{8} then look for common radical factors to cancel. Remember 8=428 = 4\cdot 2

Solution

Simplify 8\sqrt{8}

8=42,8=42=228 = 4 \cdot 2, \quad \sqrt{8} = \sqrt{4\cdot 2} = 2\sqrt{2}

Substitute into the fraction:

528=5222\dfrac{5\sqrt{2}}{\sqrt{8}} = \dfrac{5\sqrt{2}}{2\sqrt{2}}

Cancel 2\sqrt{2} from numerator and denominator:

52\dfrac{5}{2}

The simplified value is 52\dfrac{5}{2}

The correct choice is B. 52\dfrac{5}{2}.