Problem 01 Rationalize Simple Radical Denominators Simplify and rationalize the denominator: 53\dfrac{5}{\sqrt{3}}35 Choices A 533\dfrac{5}{3\sqrt{3}}335 B 533\dfrac{5\sqrt{3}}{3}353 C 535\sqrt{3}53 D 35\dfrac{\sqrt{3}}{5}53 Strategy To remove the square root from the denominator, multiply the numerator and denominator by 3\sqrt{3}3 Solution Multiply numerator and denominator by 3\sqrt{3}3 53⋅33=53(3)(3)\dfrac{5}{\sqrt{3}} \cdot \dfrac{\sqrt{3}}{\sqrt{3}} = \dfrac{5\sqrt{3}}{(\sqrt{3})(\sqrt{3})}35⋅33=(3)(3)53 Since (3)(3)=3(\sqrt{3})(\sqrt{3}) = 3(3)(3)=3 the fraction becomes 533\dfrac{5\sqrt{3}}{3}353 The denominator is now rational. The correct choice is B. 533\dfrac{5\sqrt{3}}{3}353.
Problem 02 Rationalize Simple Radical Denominators Simplify and rationalize the denominator: 25\dfrac{2}{\sqrt{5}}52 Choices A 255\dfrac{2}{5\sqrt{5}}552 B 252\sqrt{5}25 C 255\dfrac{2\sqrt{5}}{5}525 D 52\dfrac{\sqrt{5}}{2}25 Strategy Multiply the top and bottom by 5\sqrt{5}5 so that the denominator becomes 555 Solution Multiply numerator and denominator by 5\sqrt{5}5 25⋅55=25(5)(5)=255\dfrac{2}{\sqrt{5}} \cdot \dfrac{\sqrt{5}}{\sqrt{5}} = \dfrac{2\sqrt{5}}{(\sqrt{5})(\sqrt{5})} = \dfrac{2\sqrt{5}}{5}52⋅55=(5)(5)25=525 The denominator is now 555 a rational number. The correct choice is C. 255\dfrac{2\sqrt{5}}{5}525.
Problem 03 Rationalize Simple Radical Denominators Simplify and rationalize the denominator: 23\dfrac{\sqrt{2}}{\sqrt{3}}32 Choices A 63\dfrac{\sqrt{6}}{3}36 B 63\dfrac{\sqrt{6}}{\sqrt{3}}36 C 23\dfrac{\sqrt{2}}{3}32 D 23\sqrt{\dfrac{2}{3}}32 Strategy Multiply numerator and denominator by 3\sqrt{3}3 so the denominator becomes 333 Use 2⋅3=6\sqrt{2}\cdot\sqrt{3} = \sqrt{6}2⋅3=6 Solution Multiply by 33\dfrac{\sqrt{3}}{\sqrt{3}}33 23⋅33=23(3)(3)=63\dfrac{\sqrt{2}}{\sqrt{3}} \cdot \dfrac{\sqrt{3}}{\sqrt{3}} = \dfrac{\sqrt{2}\sqrt{3}}{(\sqrt{3})(\sqrt{3})} = \dfrac{\sqrt{6}}{3}32⋅33=(3)(3)23=36 The denominator is now the integer 333 The correct choice is A. 63\dfrac{\sqrt{6}}{3}36.
Problem 04 Rationalize Simple Radical Denominators Simplify and rationalize the denominator: 723\dfrac{7}{2\sqrt{3}}237 Choices A 763\dfrac{7}{6\sqrt{3}}637 B 732\dfrac{7\sqrt{3}}{2}273 C 1433\dfrac{14\sqrt{3}}{3}3143 D 736\dfrac{7\sqrt{3}}{6}673 Strategy Treat 232\sqrt{3}23 as a single denominator. Multiply numerator and denominator by 3\sqrt{3}3 then simplify the denominator. Solution Multiply by 33\dfrac{\sqrt{3}}{\sqrt{3}}33 723⋅33=732(3⋅3)\dfrac{7}{2\sqrt{3}} \cdot \dfrac{\sqrt{3}}{\sqrt{3}} = \dfrac{7\sqrt{3}}{2(\sqrt{3}\cdot\sqrt{3})}237⋅33=2(3⋅3)73 Compute 3⋅3=3\sqrt{3} \cdot \sqrt{3} = 33⋅3=3 732⋅3=736\dfrac{7\sqrt{3}}{2 \cdot 3} = \dfrac{7\sqrt{3}}{6}2⋅373=673 The denominator is now 666 The correct choice is D. 736\dfrac{7\sqrt{3}}{6}673.
Problem 05 Simplify Square Roots Using Perfect Squares Simplify: 62\dfrac{\sqrt{6}}{\sqrt{2}}26 Choices A 32\dfrac{\sqrt{3}}{2}23 B 3\sqrt{3}3 C 122\dfrac{\sqrt{12}}{2}212 D 333 Strategy You can combine the radicals first: 62=62\dfrac{\sqrt{6}}{\sqrt{2}} = \sqrt{\dfrac{6}{2}}26=26 then simplify the fraction inside the radical. Solution Combine the square roots: 62=62=3\dfrac{\sqrt{6}}{\sqrt{2}} = \sqrt{\dfrac{6}{2}} = \sqrt{3}26=26=3 The result already has a rational denominator (since there is no denominator at all). The correct choice is B. 3\sqrt{3}3.
Problem 06 Simplify & Rationalize Combined Simplify and rationalize the denominator: 3+55\dfrac{3 + \sqrt{5}}{\sqrt{5}}53+5 Choices A 35+55\dfrac{3\sqrt{5} + 5}{5}535+5 B 3+555\dfrac{3 + 5\sqrt{5}}{5}53+55 C 3+53 + \sqrt{5}3+5 D 3+55\dfrac{3 + \sqrt{5}}{5}53+5 Strategy Multiply the entire numerator and the denominator by 5\sqrt{5}5 Distribute 5\sqrt{5}5 across 3+53 + \sqrt{5}3+5 in the numerator. Solution Multiply by 55\dfrac{\sqrt{5}}{\sqrt{5}}55 3+55⋅55=(3+5)5(5)(5)\dfrac{3 + \sqrt{5}}{\sqrt{5}} \cdot \dfrac{\sqrt{5}}{\sqrt{5}} = \dfrac{(3 + \sqrt{5})\sqrt{5}}{(\sqrt{5})(\sqrt{5})}53+5⋅55=(5)(5)(3+5)5 Distribute 5\sqrt{5}5 in the numerator: (3+5)5=35+(5)(5)=35+5(3 + \sqrt{5})\sqrt{5} = 3\sqrt{5} + (\sqrt{5})(\sqrt{5}) = 3\sqrt{5} + 5(3+5)5=35+(5)(5)=35+5 The denominator is (5)(5)=5(\sqrt{5})(\sqrt{5}) = 5(5)(5)=5 So the fraction becomes 35+55\dfrac{3\sqrt{5} + 5}{5}535+5 The correct choice is A. 35+55\dfrac{3\sqrt{5} + 5}{5}535+5.
Problem 07 Simplify & Rationalize Combined Simplify and rationalize the denominator: 4−22\dfrac{4 - \sqrt{2}}{\sqrt{2}}24−2 Choices A 42−22\dfrac{4\sqrt{2} - 2}{2}242−2 B 42−24\sqrt{2} - 242−2 C 22−12\sqrt{2} - 122−1 D 4−22\dfrac{4 - \sqrt{2}}{2}24−2 Strategy Multiply numerator and denominator by 2\sqrt{2}2 Distribute 2\sqrt{2}2 over 4−24 - \sqrt{2}4−2 in the numerator, then simplify. Solution Multiply by 22\dfrac{\sqrt{2}}{\sqrt{2}}22 4−22⋅22=(4−2)2(2)(2)\dfrac{4 - \sqrt{2}}{\sqrt{2}} \cdot \dfrac{\sqrt{2}}{\sqrt{2}} = \dfrac{(4 - \sqrt{2})\sqrt{2}}{(\sqrt{2})(\sqrt{2})}24−2⋅22=(2)(2)(4−2)2 Distribute 2\sqrt{2}2 (4−2)2=42−(2)(2)=42−2(4 - \sqrt{2})\sqrt{2} = 4\sqrt{2} - (\sqrt{2})(\sqrt{2}) = 4\sqrt{2} - 2(4−2)2=42−(2)(2)=42−2 The denominator is (2)(2)=2(\sqrt{2})(\sqrt{2}) = 2(2)(2)=2 so 42−22\dfrac{4\sqrt{2} - 2}{2}242−2 Now simplify by dividing each term by 222 422−22=22−1\dfrac{4\sqrt{2}}{2} - \dfrac{2}{2} = 2\sqrt{2} - 1242−22=22−1 The correct choice is C. 22−12\sqrt{2} - 122−1.
Problem 08 Simplify Square Roots Using Perfect Squares Simplify: 842\dfrac{\sqrt{8}}{4\sqrt{2}}428 Choices A 12\dfrac{1}{2}21 B 24\dfrac{\sqrt{2}}{4}42 C 84\dfrac{\sqrt{8}}{4}48 D 222 Strategy First simplify 8\sqrt{8}8 using a perfect square factor. Then see if any radicals cancel before worrying about rationalizing. Solution Simplify 8\sqrt{8}8 8=4⋅2,8=4⋅2=228 = 4 \cdot 2, \quad \sqrt{8} = \sqrt{4\cdot 2} = 2\sqrt{2}8=4⋅2,8=4⋅2=22 Substitute into the fraction: 842=2242\dfrac{\sqrt{8}}{4\sqrt{2}} = \dfrac{2\sqrt{2}}{4\sqrt{2}}428=4222 Cancel 2\sqrt{2}2 from numerator and denominator: 24=12\dfrac{2}{4} = \dfrac{1}{2}42=21 The simplified value is 12\dfrac{1}{2}21 which already has a rational denominator. The correct choice is A. 12\dfrac{1}{2}21.
Problem 09 Simplify Square Roots Using Perfect Squares Simplify: 233\dfrac{2\sqrt{3}}{\sqrt{3}}323 Choices A 232\sqrt{3}23 B 32\dfrac{\sqrt{3}}{2}23 C 2\sqrt{2}2 D 222 Strategy Notice the same radical appears in numerator and denominator. You can cancel 3\sqrt{3}3 as long as it is not zero. Solution Write the fraction explicitly: 233\dfrac{2\sqrt{3}}{\sqrt{3}}323 Cancel 3\sqrt{3}3 from top and bottom: 233=2\dfrac{2\cancel{\sqrt{3}}}{\cancel{\sqrt{3}}} = 2323=2 The result is the integer 222 The correct choice is D. 222.
Problem 10 Simplify Square Roots Using Perfect Squares Simplify: 528\dfrac{5\sqrt{2}}{\sqrt{8}}852 Choices A 522\dfrac{5\sqrt{2}}{2}252 B 52\dfrac{5}{2}25 C 52\dfrac{5}{\sqrt{2}}25 D 5\sqrt{5}5 Strategy First simplify 8\sqrt{8}8 then look for common radical factors to cancel. Remember 8=4⋅28 = 4\cdot 28=4⋅2 Solution Simplify 8\sqrt{8}8 8=4⋅2,8=4⋅2=228 = 4 \cdot 2, \quad \sqrt{8} = \sqrt{4\cdot 2} = 2\sqrt{2}8=4⋅2,8=4⋅2=22 Substitute into the fraction: 528=5222\dfrac{5\sqrt{2}}{\sqrt{8}} = \dfrac{5\sqrt{2}}{2\sqrt{2}}852=2252 Cancel 2\sqrt{2}2 from numerator and denominator: 52\dfrac{5}{2}25 The simplified value is 52\dfrac{5}{2}25 The correct choice is B. 52\dfrac{5}{2}25.