index

Pre-Algebra Workbook 6: Fractions III – Multiplying, Dividing & Mixed Numbers

· 1min
Problem 01
Multiply Fractions & Mixed Numbers

Compute: 2335\dfrac{2}{3} \cdot \dfrac{3}{5}

Choices
A 615\dfrac{6}{15}
B 25\dfrac{2}{5}
C 56\dfrac{5}{6}
D 310\dfrac{3}{10}
Strategy

To multiply fractions, multiply the numerators together and the denominators together, then simplify the answer if possible.

Solution

Multiply the numerators and denominators:

2335=2335=615\dfrac{2}{3} \cdot \dfrac{3}{5} = \dfrac{2 \cdot 3}{3 \cdot 5} = \dfrac{6}{15}

Simplify 615\dfrac{6}{15} by dividing numerator and denominator by their GCF 33

615=6÷315÷3=25\dfrac{6}{15} = \dfrac{6 \div 3}{15 \div 3} = \dfrac{2}{5}

So the product is 25\dfrac{2}{5}

The correct choice is B. 25\dfrac{2}{5}.


Problem 02
Multiply Fractions & Mixed Numbers

Compute: 4254 \cdot \dfrac{2}{5}

Choices
A 25\dfrac{2}{5}
B 820\dfrac{8}{20}
C 1351 \dfrac{3}{5}
D 3353 \dfrac{3}{5}
Strategy

Think of the whole number 44 as 41\dfrac{4}{1} then multiply the fractions and simplify.

Solution

Write 44 as 41\dfrac{4}{1}

425=4125=4215=854 \cdot \dfrac{2}{5} = \dfrac{4}{1} \cdot \dfrac{2}{5} = \dfrac{4 \cdot 2}{1 \cdot 5} = \dfrac{8}{5}

Convert 85\dfrac{8}{5} to a mixed number if desired:

8÷5=1 remainder 385=1358 \div 5 = 1 \text{ remainder } 3 \quad \dfrac{8}{5} = 1 \dfrac{3}{5}

So the product is 1351 \dfrac{3}{5}

The correct choice is C. 1351 \dfrac{3}{5}.


Problem 03
Multiply Fractions & Mixed Numbers

Compute: 112231 \dfrac{1}{2} \cdot \dfrac{2}{3}

Choices
A 11
B 13\dfrac{1}{3}
C 34\dfrac{3}{4}
D 22
Strategy

Convert the mixed number 1121 \dfrac{1}{2} to an improper fraction, then multiply and simplify the result.

Solution

Convert 1121 \dfrac{1}{2} to an improper fraction:

112=12+12=321 \dfrac{1}{2} = \dfrac{1 \cdot 2 + 1}{2} = \dfrac{3}{2}

Now multiply:

3223=3223=66=1\dfrac{3}{2} \cdot \dfrac{2}{3} = \dfrac{3 \cdot 2}{2 \cdot 3} = \dfrac{6}{6} = 1

So the product is 11

The correct choice is A. 11.


Problem 04
Divide Fractions & Mixed Numbers

Compute: 34÷25\dfrac{3}{4} \div \dfrac{2}{5}

Choices
A 310\dfrac{3}{10}
B 56\dfrac{5}{6}
C 815\dfrac{8}{15}
D 1781 \dfrac{7}{8}
Strategy

To divide by a fraction, multiply by its reciprocal. Flip 25\dfrac{2}{5} to get 52\dfrac{5}{2} and then multiply.

Solution

Rewrite the division as multiplication by the reciprocal:

34÷25=3452\dfrac{3}{4} \div \dfrac{2}{5} = \dfrac{3}{4} \cdot \dfrac{5}{2}

Multiply the fractions:

3452=3542=158\dfrac{3}{4} \cdot \dfrac{5}{2} = \dfrac{3 \cdot 5}{4 \cdot 2} = \dfrac{15}{8}

Convert 158\dfrac{15}{8} to a mixed number:

15÷8=1 remainder 7158=17815 \div 8 = 1 \text{ remainder } 7 \quad \dfrac{15}{8} = 1 \dfrac{7}{8}

So the quotient is 1781 \dfrac{7}{8}

The correct choice is D. 1781 \dfrac{7}{8}.


Problem 05
Divide Fractions & Mixed Numbers

Compute: 213÷162 \dfrac{1}{3} \div \dfrac{1}{6}

Choices
A 77
B 1414
C 4234 \dfrac{2}{3}
D 718\dfrac{7}{18}
Strategy

Convert 2132 \dfrac{1}{3} to an improper fraction, then multiply by the reciprocal of 16\dfrac{1}{6}

Solution

Convert 2132 \dfrac{1}{3} to an improper fraction:

213=23+13=732 \dfrac{1}{3} = \dfrac{2 \cdot 3 + 1}{3} = \dfrac{7}{3}

Divide by 16\dfrac{1}{6} by multiplying by its reciprocal 61\dfrac{6}{1}

73÷16=7361=7631=423=14\dfrac{7}{3} \div \dfrac{1}{6} = \dfrac{7}{3} \cdot \dfrac{6}{1} = \dfrac{7 \cdot 6}{3 \cdot 1} = \dfrac{42}{3} = 14

So the quotient is 1414

The correct choice is B. 1414.


Problem 06
Multiply Fractions & Mixed Numbers

Compute: 3547-\dfrac{3}{5} \cdot \dfrac{4}{7}

Choices
A 1235\dfrac{12}{35}
B 715-\dfrac{7}{15}
C 1235-\dfrac{12}{35}
D 712\dfrac{7}{12}
Strategy

Multiply the fractions as usual, then determine the sign of the result. A negative times a positive is negative.

Solution

Multiply the numerators and denominators:

3547=3457=1235-\dfrac{3}{5} \cdot \dfrac{4}{7} = -\dfrac{3 \cdot 4}{5 \cdot 7} = -\dfrac{12}{35}

The fraction 1235\dfrac{12}{35} cannot be simplified further.

So the product is 1235-\dfrac{12}{35}

The correct choice is C. 1235-\dfrac{12}{35}.


Problem 07
Divide Fractions & Mixed Numbers

Compute: 56÷(13)\dfrac{-5}{6} \div \left(-\dfrac{1}{3}\right)

Choices
A 52-\dfrac{5}{2}
B 518\dfrac{5}{18}
C 212-2 \dfrac{1}{2}
D 2122 \dfrac{1}{2}
Strategy

Divide by multiplying by the reciprocal. Pay attention to the signs: a negative divided by a negative is positive.

Solution

Rewrite the division as multiplication by the reciprocal of 13-\dfrac{1}{3} which is 31-\dfrac{3}{1}

56÷(13)=56(31)\dfrac{-5}{6} \div \left(-\dfrac{1}{3}\right) = \dfrac{-5}{6} \cdot \left(-\dfrac{3}{1}\right)

Multiply the fractions:

56(31)=(5)(3)61=156\dfrac{-5}{6} \cdot \left(-\dfrac{3}{1}\right) = \dfrac{(-5) \cdot (-3)}{6 \cdot 1} = \dfrac{15}{6}

Since negative times negative is positive, the result is positive.

Simplify 156\dfrac{15}{6} by dividing numerator and denominator by 33

156=52=212\dfrac{15}{6} = \dfrac{5}{2} = 2 \dfrac{1}{2}

So the quotient is 2122 \dfrac{1}{2}

The correct choice is D. 2122 \dfrac{1}{2}.


Problem 08
Fraction of a Number ("Of" Problems)

Compute: 23\dfrac{2}{3} of 1818

Choices
A 99
B 1212
C 66
D 1818
Strategy

The phrase “23\dfrac{2}{3} of 1818” means 2318\dfrac{2}{3} \cdot 18 Multiply and simplify.

Solution

Translate the phrase to multiplication:

23 of 18=2318\dfrac{2}{3} \text{ of } 18 = \dfrac{2}{3} \cdot 18

Write 1818 as 181\dfrac{18}{1} and multiply:

23181=21831=363=12\dfrac{2}{3} \cdot \dfrac{18}{1} = \dfrac{2 \cdot 18}{3 \cdot 1} = \dfrac{36}{3} = 12

So 23\dfrac{2}{3} of 1818 is 1212

The correct choice is B. 1212.


Problem 09
Fraction of a Number ("Of" Problems)

A water bottle is filled to 34\dfrac{3}{4} of its capacity. If the bottle holds 3232 ounces when full, how many ounces of water are in the bottle?

Choices
A 88 ounces
B 1616 ounces
C 2424 ounces
D 3232 ounces
Strategy

34\dfrac{3}{4} of 3232” means 3432\dfrac{3}{4} \cdot 32 Multiply and simplify.

Solution

Compute 34\dfrac{3}{4} of 3232

3432=34321=33241=964=24\dfrac{3}{4} \cdot 32 = \dfrac{3}{4} \cdot \dfrac{32}{1} = \dfrac{3 \cdot 32}{4 \cdot 1} = \dfrac{96}{4} = 24

So there are 2424 ounces of water in the bottle.

The correct choice is C. 2424 ounces.


Problem 10
Multiply Fractions & Mixed Numbers

The area of a rectangle is found by multiplying its length by its width. A rectangle has length 34\dfrac{3}{4} meter and width 25\dfrac{2}{5} meter. What is the area of the rectangle?

Choices
A 310\dfrac{3}{10} square meters
B 215\dfrac{2}{15} square meters
C 58\dfrac{5}{8} square meters
D 69\dfrac{6}{9} square meters
Strategy

Multiply the two fractions 34\dfrac{3}{4} and 25\dfrac{2}{5} to find the area. Then simplify the result if possible.

Solution

Multiply the length and width:

Area=3425=3245=620\text{Area} = \dfrac{3}{4} \cdot \dfrac{2}{5} = \dfrac{3 \cdot 2}{4 \cdot 5} = \dfrac{6}{20}

Simplify 620\dfrac{6}{20} by dividing numerator and denominator by 22

620=310\dfrac{6}{20} = \dfrac{3}{10}

So the area is 310\dfrac{3}{10} square meters.

The correct choice is A. 310\dfrac{3}{10} square meters.